Matematica discreta Esempi

Trovare il Coefficiente di Correlazione Lineare table[[x,y],[0,5],[1,7],[2,9],[3,11]]
xy051729311xy051729311
Passaggio 1
Il coefficiente di correlazione lineare misura la relazione tra i valori accoppiati in un campione.
r=n(xy)-xyn(x2)-(x)2n(y2)-(y)2r=n(xy)xyn(x2)(x)2n(y2)(y)2
Passaggio 2
Somma i valori xx.
x=0+1+2+3x=0+1+2+3
Passaggio 3
Semplifica l'espressione.
x=6x=6
Passaggio 4
Somma i valori yy.
y=5+7+9+11y=5+7+9+11
Passaggio 5
Semplifica l'espressione.
y=32y=32
Passaggio 6
Somma i valori di xyxy.
xy=05+17+29+311xy=05+17+29+311
Passaggio 7
Semplifica l'espressione.
xy=58xy=58
Passaggio 8
Somma i valori di x2x2.
x2=(0)2+(1)2+(2)2+(3)2x2=(0)2+(1)2+(2)2+(3)2
Passaggio 9
Semplifica l'espressione.
x2=14x2=14
Passaggio 10
Somma i valori di y2y2.
y2=(5)2+(7)2+(9)2+(11)2y2=(5)2+(7)2+(9)2+(11)2
Passaggio 11
Semplifica l'espressione.
y2=276y2=276
Passaggio 12
Inserisci i valori calcolati.
r=4(58)-6324(14)-(6)24(276)-(32)2r=4(58)6324(14)(6)24(276)(32)2
Passaggio 13
Semplifica l'espressione.
r=1r=1
 [x2  12  π  xdx ]  x2  12  π  xdx